OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Nutts Pond, Manchester,** the program coordinators have made the following observations and recommendations.

Thank you for your continued hard work sampling the pond this year! Your monitoring group sampled the deep spot **three** times this year and has done so for many years! As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the good work!

Stormwater Management Project Update

In 2006, the City of Manchester received a DES Local Watershed Initiative Grant to improve the water quality of Nutts Pond by implementing stormwater Best Management Practices (BMPs) and Low Impact Development (LID) techniques.

The proposed project will reduce non-point source pollutants from entering Nutts Pond from the East and South sub-watersheds using structural BMPs, non-structural BMPs and utilizing LID components and techniques that will improve water quality and prevent future pond degradation.

BMPs and LID components will be accomplished by installing forebays and improving wetland areas at the East Inlet, redirecting storm water runoff into a proposed forebay and existing wetland at the South Inlet, installing maintenance access points and permanent dewatering ponds for collecting captured sediments at the East and South inlets and implementing a winter sand reduction program.

The City of Manchester Environmental Protection Department and Supplemental Environmental Project Plan Advisory Committee are providing the match required for this project.

FIGURE INTERPRETATION

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae are typically microscopic plants that are naturally occurring in lake ecosystems and contain chlorophyll-a. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. **The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.**

The current year data (the top graph) show that the chlorophyll-a concentration *gradually increased* from **June** through **August**.

The historical data (the bottom graph) show that the **2007** chlorophyll-a mean is **approximately equal to** the state median and is **slightly less than** the similar lake median. For more information on the similar lake median, refer to Appendix F.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing yet variable* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *fluctuated between 4.67 and 24.84 mg/m³* since **2000**. The **2007** mean chlorophyll-a concentration was the lowest since monitoring began. We hope this trend continues!

After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

The current year data (the top graph) show that the non-viewscope and viewscope in-lake transparency *remained relatively stable* from **June** through **August**.

The transparency measured with the viewscope was generally *greater than* the transparency measured without the viewscope this summer. As discussed previously, a comparison of the transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *relatively stable* trend for in-lake non-viewscope transparency. Specifically, the transparency has *ranged between approximately 1.76 and 3.47 meters* since monitoring began in 2000.

Again, please keep in mind that this trend is based on only *eight* years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Since the viewscope has only been used for two years to measure the transparency of the pond, it is not possible to determine historical trends for viewscope transparency. We recommend that your group continue to measure the transparency with and without the use of the viewscope on each sampling event. Ultimately, we would like all monitoring groups to use a viewscope to take Secchi disk readings as the use of the viewscope results in less variability in transparency readings between monitors and sampling events. At some point in

the future, when we have sufficient data to determine a statistical relationship between transparency readings collected with and without the use of a viewscope, it may only be necessary to collect transparency readings with the use of a viewscope.

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake/pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased* from **June** to **July**, and then *decreased* from **July** to **August**.

The historical data show that the **2007** mean epilimnetic phosphorus concentration is *greater than* the state and similar lake medians. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *decreased* from **June** through **August**.

The hypolimnetic (lower layer) turbidity sample was *elevated* on the **June** sampling event (**162 NTUs**). This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the pond bottom is covered by an easily disturbed thick organic layer of sediment. When the pond bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

The historical data show that the **2007** mean hypolimnetic phosphorus concentration is *much greater than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

Overall, visual inspection of the historical data trend line for the epilimnion shows an overall *increasing* phosphorus trend, however mean phosphorus concentration have remained *relatively stable* since **2002**.

Overall, visual inspection of the historical data trend line for the hypolimnion shows a *decreasing* phosphorus trend since monitoring began. Specifically the mean annual concentration has *improved* since monitoring began in **2000**. Also, the **2007** mean phosphorus concentration was the lowest recorded since monitoring began in **2000**. We hope this trend continues!

As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton species observed in the pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

The dominant phytoplankton species observed in the **June** sample were **Ceratium** (**Dinoflagellate**), **Mallomonas** (**Golden-Brown**), and **Asterionella** (**Diatom**).

The dominant species observed in the **July** sample were **Dinobryon** (Golden-Brown), **Ceratium** (Dinoflagellate), and **Synura** (Golden-Brown).

The dominant species observed in the August sample were **Synura** (Golden-Brown), **Dinobryon** (Golden Brown), and Mallomonas (Golden-Brown).

The **2007** phytoplankton abundance was high, however chlorophyll-a concentrations were not indicative of an algal bloom.

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **6.66** in the hypolimnion to **7.14** in the epilimnion, which means that the water is *approximately neutral*.

It is important to point out that the hypolimnetic (lower layer) pH was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the pond bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the state's abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed

explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **18.0 mg/L**, which is **much greater than** the state median. In addition, this indicates that the pond has a **low vulnerability** to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **38.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **545.33 uMhos/cm**, which is *much greater than* the state median.

The conductivity continued to remain *much greater than* the state median in the pond and tributaries this year. Typically, elevated conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff, which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and rain event sampling along the tributaries with *elevated* conductivity so that we can determine what may be causing the increases.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries with *elevated* conductivity to help identify the sources of conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at www.des.nh.gov/wmb/vlap/2004/documents/Appendix_D.pdf or contact the VLAP Coordinator.

It is likely that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. The most commonly used de-icing material in New Hampshire is salt (sodium chloride).

A limited amount of chloride sampling was conducted during **2007**. Please refer to the discussion of **Table 13** for more information.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* (42.0 ug/L) in the **Inlet at Home Depot** station this year. This station has had a history of *elevated* and *fluctuating* phosphorus concentrations. We recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary so that we can determine what may be causing the elevated concentrations.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2007. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of sufficient amounts of
dissolved oxygen in the water column is vital to fish and amphibians
and bottom-dwelling organisms. Please refer to the "Chemical
Monitoring Parameters" section of this report for a more detailed
explanation.

During this year, and many past sampling years, the pond has experienced a lower dissolved oxygen concentration and a higher total phosphorus concentration in the hypolimnion (lower layer) than in the epilimnion (upper layer). These data suggest that the process of *internal phosphorus loading* is occurring in the pond. When the hypolimnetic dissolved oxygen concentration is depleted to less than 1 mg/L, as it was on the annual biologist visit this year and on many previous annual visits, the phosphorus that is normally bound up with metals in the sediment may be re-released into the water column. Since an internal source of phosphorus in the pond may be present, it is even more important that watershed residents act proactively to minimize phosphorus loading from the watershed.

Low hypolimnetic oxygen levels are a sign of the pond's **aging** and **declining** health. This year the monitoring group collected the dissolved oxygen profile in **June**, **July**, and **August**. The hypolimnion was anoxic during all three sample dates.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

As discussed previously, the hypolimnetic (lower layer) turbidity was *elevated* (162.0 NTUs) on the June sampling event. In addition, the hypolimnetic turbidity has been elevated on many sampling events during previous sampling years. This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed, thick organic layer of sediment. When the pond bottom is disturbed, phosphorus rich sediment, is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems,

animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The **Inlet at Home Depot** was sampled for chloride during **March**. The results ranged from **53 to 420 mg/L**, which is **greater than** the chronic chloride criteria.

The **Outlet** was sampled for chloride during **March**. The results ranged from **190 to 200 mg/L**, which is **slightly less than** the chronic chloride criteria, however is still **elevated**.

We recommend that your monitoring group continue to conduct chloride sampling at the deep spot and in the tributaries near salted roadways, particularly in the spring soon after snow-melt and after rain events during the summer. Specifically, we recommend that the epilimnion, metalimnion, and hypolimnion be sampled to determine if a **chemocline**, a formation of lake layers controlled by what is dissolved in the water rather the temperature of the water, exists in the water column.

Please note that chloride analyses will be run free of charge at the DES Limnology Center beginning in 2008. Please contact the VLAP Coordinator if you are interested in chloride monitoring. In addition, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

In addition, if your group is concerned about salt use on a particular roadway, we recommend contacting the town road agent or the Department of Transportation to discuss the implementation of a low-salt area near the lake and/or its major tributaries.

To learn more about conductivity and chloride pollution and what can be done about to minimize it, please refer to the 2004 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.state.nh.us/WMB/VLAP/2004/documents/Appendix_D.pdf or contact the VLAP Coordinator.

Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

An annual DES Biologist visit was not conducted during 2007.

Please contact the VLAP Coordinator during the spring of 2008 to schedule an annual biologist visit.

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did a *very good* job when collecting samples this year! Specifically, the

members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify a few aspects of sample collection that your group could improve upon, as follows:

- ➤ **Deep Spot Sampling:** Please try to sample the deep spot between 10:00am and 2:00pm. Sampling between these times allows consistency with VLAP standard operating procedures and comparability between sampling events.
- > **Sample bottle volume:** Please fill each sample bottle up to the neck of the bottle where the bottle curves in. This will ensure that the laboratory staff will have enough sample water to conduct all of the necessary tests.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/factsheets/ard/ard-32.htm.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975.

Best Management Practices for Well Drilling Operations, DES fact sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm.

Biodegradable Soaps and Water Quality, DES fact sheet BB-54, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-54.htm.

Canada Geese Facts and Management Options, DES fact sheet BB-53, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-1.htm.

Freshwater Jellyfish In New Hampshire, DES fact sheet WD-BB-5, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-51/htm.

Impacts of Development Upon Stormwater Runoff, DES fact sheet WD-WQE-7, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-7.htm.

IPM: An Alternative to Pesticides, DES fact sheet WD-SP-3, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-3.htm.

Iron Bacteria in Surface Water, DES fact sheet WD-BB-18, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-18.htm.

Lake Foam, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-5.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-9.htm.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental

Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-17.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-2.htm.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-4.htm.

Sand Dumping - Beach Construction, DES fact sheet WD-BB-15, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-15.htm.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-4.htm.

Soil Erosion and Sediment Control on Construction Sites, DES fact sheet WQE-6, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-6.htm.

Swimmers Itch, DES fact sheet WD-BB-2, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-2.htm.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-4.htm.

Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-16.htm.